Computational complexity of LCPs associated with positive definite symmetric matrices
نویسندگان
چکیده
منابع مشابه
DDtBe for Band Symmetric Positive Definite Matrices
We present a new parallel factorization for band symmetric positive definite (s.p.d) matrices and show some of its applications. Let A be a band s.p.d matrix of order n and half bandwidth m. We show how to factor A as A =DDt Be using approximately 4nm2 jp parallel operations where p =21: is the number of processors. Having this factorization, we improve the time to solve Ax = b by a factor of m...
متن کاملEstimation of symmetric positive-definite matrices from imperfect measurements
In a number of contexts relevant to control problems, including estimation of robot dynamics, covariance, and smart structure mass and stiffness matrices, we need to solve an over-determined set of linear equations AX ≈ B with the constraint that the matrix X be symmetric and positive definite. In the classical least squares method the measurements of A are assumed to be free of error, hence, a...
متن کاملDeconvolution Density Estimation on Spaces of Positive Definite Symmetric Matrices
Motivated by applications in microwave engineering and diffusion tensor imaging, we study the problem of deconvolution density estimation on the space of positive definite symmetric matrices. We develop a nonparametric estimator for the density function of a random sample of positive definite matrices. Our estimator is based on the Helgason-Fourier transform and its inversion, the natural tools...
متن کاملApproximating Sets of Symmetric and Positive-Definite Matrices by Geodesics
We formulate a generalized version of the classical linear regression problem on Riemannian manifolds and derive the counterpart to the normal equations for the manifold of symmetric and positive definite matrices, equipped with the only metric that is invariant under the natural action of the general linear group.
متن کاملScaling-Rotation Distance and Interpolation of Symmetric Positive-Definite Matrices
We introduce a new geometric framework for the set of symmetric positive-definite (SPD) matrices, aimed at characterizing deformations of SPD matrices by individual scaling of eigenvalues and rotation of eigenvectors of the SPD matrices. To characterize the deformation, the eigenvalue-eigenvector decomposition is used to find alternative representations of SPD matrices and to form a Riemannian ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 1979
ISSN: 0025-5610,1436-4646
DOI: 10.1007/bf01588254